### Article

## On the optimal focusing of solitons and breathers in long-wave models

Conditions of optimal (synchronized) collisions of any number of solitons and breathers are studied within the framework of the Gardner equation (GE) with positive cubic nonlinearity, which in the limits of small and large

amplitudes tends to other long-wave models, the classic and the modified Korteweg–de Vries equations. The local

solution for an isolated soliton or breather within the GE is obtained. The wave amplitude in the focal point is calculated exactly. It exhibits a linear superposition of partial amplitudes of the solitons and breathers. The crucial

role of the choice of proper soliton polarities and breather phases on the cumulative wave amplitude in the focal point is demonstrated. Solitons aremost synchronized when they have alternating polarities. The straightforward link to the problem of synchronization of envelope solitons and breathers in the focusing nonlinear Schrödinger equation is discussed (then breathers correspond to envelope solitons propagating above a condensate).

Properties of rogue waves in the basin of intermediate depth are discussed in comparison with known properties of rogue waves in deep waters. Based on observations of rogue waves in the ocean of intermediate depth we demonstrate that the modulational instability can still play a significant role in their formation for basins of 20m and larger depth. For basins of smaller depth, the influence of modulational instability is less probable. By using the rational solutions of the nonlinear Schrodinger equation (breathers), it is shown that the rogue wave packet becomes wider and contains more individual waves in intermediate rather than in deep waters, which is also confirmed by observations.

Perspective methods of information transfer in optical communication channels based on the latest achievements of quantum physics are considered. In the near future these methods can solve both the problem of creating an optical channel conducting with physically unlimited bandwidth, and the problem of secretly transferring information in a fiber-optic information channel. The results of the latest experiments related to the quantum properties of photons are described. The use of solitons as carriers of an information signal is considered. The technologies of using the " temporal cloak " and noise of optical amplifiers for data transmission in fiber-optic communication lines are presented.

Novikov's conjecture on the Riemann-Schottky problem: {\it the Jacobians of smooth algebraic curves are precisely those indecomposable principally polarized abelian varieties (ppavs) whose theta-functions provide solutions to the Kadomtsev-Petviashvili (KP) equation}, was the first evidence of nowadays well-established fact: connections between the algebraic geometry and the modern theory of integrable systems is beneficial for both sides. The purpose of this paper is twofold. Our first goal is to present a proof of the strongest known characterization of a Jacobian variety in this direction: {\it an indecomposable ppav X is the Jacobian of a curve if and only if its Kummer variety K(X) has a trisecant line} and the solution of the characterization problem of principally polarized Prym varieties. The latter problem is almost as old and famous as the Riemann-Schottky problem but is much harder. In some sense the Prym varieties may be geometrically the easiest-to-understand ppavs beyond Jacobians, and studying them may be a first step towards understanding the geometry of more general abelian varieties as well. Our second and primary objective is to take this opportunity to elaborate on motivations underlining the proposed solution of the Riemann-Schottky problem, to introduce a certain circle of ideas and methods, developed in the theory of soliton equations, and to convince the reader that they are algebro-geometric in nature, simple and universal enough to be included in the Handbook of moduli.

This is an advanced text on ordinary differential equations (ODES) in Banach and more general locally convex spaces, most notably the ODEs on measures and various function spaces. It yields the concise exposition of the fundamentals with the fast, but rigorous and systematic transition to the up-fronts of modern research in linear and nonlinear partial and pseudo-differential equations, general kinetic equations and fractional evolutions. The level of generality is chosen to be suitable for the study of the most important nonlinear equations of mathematical physics, such as Boltzmann, Smoluchovskii, Vlasov, Landau-Fokker-Planck, Cahn-Hilliard, Hamilton-Jacobi-Bellman, nonlinear Schroedinger, McKean-Vlasov diffusions and their nonlocal extensions, mass-action-law kinetics from chemistry. It also covers nonlinear evolutions arising in evolutionary biology and mean-field games, optimization theory, epidemics and system biology, in general models of interacting particles or agents describing splitting and merging, collisions and breakage, mutations and the preferential-attachment growth on networks. The book is meant for final year undergraduate and postgraduate students and researchers in differential equations and their applications. A significant amount of attention is paid to the interconnections between various topics revealing where and how a particular result is used in other chapters or may be used in other contexts, as well as to the clarification of the links between the languages of pseudo-differential operators, generalized functions, operator theory, abstract linear spaces, fractional calculus and path integrals.

A method based on the spectral analysis of thermowave oscillations formed under the effect of radiation of lasers operated in a periodic pulsed mode is developed for investigating the state of the interface of multilayered systems. The method is based on high sensitivity of the shape of the oscillating component of the pyrometric signal to adhesion characteristics of the phase interface. The shape of the signal is quantitatively estimated using the correlation coefficient (for a film–interface system) and the transfer function (for multilayered specimens).

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.